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SIGNIFICANCE AND EXPLANATION

This paper deals with the Cauchy problem for the nonlinear diffusion

equation

-- (ul ul 1) 0 on (O,-) x RN

- (CP)

u(0,•) = u0 (•) on R
p

when 0 < m < I (case of a fast nonlinear diffusion).

Let us recall that the corresponding linear Cauchy problem (m = I in the

above) has a solution, at least on a small time interval, if u0 does not grow

too fast at infinity, namely if

c > N, fn uo(x)I e - C xl2  <  "NP

R

This condition is known to be necessary for the existence of nonnegative

solutions. Similarly the above Cauchy problem is well-posed when m > I only

in a class of data u0  satisfying some adequate growth condition at infinity.

It turns out that, for 0 < m < 1, no growth condition is required on

u0 . We prove here that for any locally integrable u0  on lN, (CP) has a

solution which is global in time. Moreover, the solution is unique in that

class.

This paper fills in the missing gap in the understanding of the Cauchy

problem for nonlinear diffusion equations of above type and emphasizes once

more the singular structure of this model when 0 < m < 1. Such situations

arise in some problems in plasma physics.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC and not with the authors of this report.
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THE CAUCHY PROBLEM FOR U t  AUm WHEN 0 < m < 1

Miguel A. Herrero*t and Michel Pierre**tt

S

1. INTRODUCTION

This paper deals with the following Cauchy problem S
3I1 u . A(ululm- 1 o 0-I IR N

at

(1.2) u(O,.) = u

where

(1.3) 0 < m <

and I
N

(1.4) u E Lloc(IR

Equation (1.1) has been suggested as a mathematical model for a lot of

physical problems. We will not recall them here and we refer to the survey [15]

where the very extensive literature on (1.1) is summarized.

Our goal is to emphasize some features of (1.1) when m < I Thus our

main result claims that the Cauchy problem (1.1), (1.2) has a global solution ,
1 Nin time for any u° E L (IR ) .This is in sharp contrast with the case m I

where some growth condition at infinity is required on u°  to provide even

a local solution in time, namely
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** Department of Mathematics, University of Nancy I, B. P. 239, 54506 -
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" If m = I , there exists c > 0 such that

JN eCxi I u OWI dx <

• If m> I

sup R-(N+2/(m-1)) f u (x) <
R 1I J{x;IlxI<R} 0

Note that these conditions are necessary to obtain non negative solutions.

The necessity is proved in [2] and the sufficiency in [8] for m > I (see

[12] for m = 1)

Here we prove that, if 0 < m < I , there is a local estimate of the form

(1.5) [{x;Ixf<R} Iu(t,x)[ dx < F( t,R, XIflXI n(2R u x) dx)

where. F is bounded on bounded subsets of IR (see (2.4) for its precise form).

Combined with classical monotonicity properties, this suffices to establish

existence for any u 0 E Loc(IRN) independently of the behavior of u (x) for

lxi large. The estimate (1.5) relies essentially on an idea introduced in [3].

It has been extensively used for semi-linear problems in [3], [4] and also

recently in (7]. The same kind of local estimates enables us to prove uniqueness

of strong solutions for all 0 < m < I (see [8] and [10] when m > 1). p

In the case when

(1.6) (N-2)+/N - max((N-2)/N,O) < m < I

we obtain here more precise results on the solutions of (1.1).

i) We exhibit a regularizing effect from L N (. into Lc(_

that is, an estimate of the form

(1.7) sup Iu(t,x)l < F(t,R,[ Uo(X) I dx Vt > 0
lxl<R J{x; Ix<2R} p

Conditions under which solutions become bounded are also discussed.

. . . . , --
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ii) We look at the behavior for !xj large of the non-negative solutions.

The precise results and more comments are to be found in the next section.

Their proofs are the content of section 3.

We thank J.L. VAZQUEZ for some useful discussions and comments. D

I

.. . . . . .-.. _-,

. . . . . . . . . . _
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2. THE RESULTS

By a solution of (1.1), we mean a function u satisfying •

(2.1) u E C((o,-[; l (raN))' loc .'""'

(2.2) A) - 0 in 0 0,[ x IRN

Since 0 < m < 1 , (2.1) implies that Iulm  is locally integrable on
N

[0,-[ x IR . Therefore (2.2) makes sense in the space of distributions on

]O,-[ x IRN . Throughout this paper, we shall write u(t,x) or u(t) to

designate such a function. -.

NLet B R {xEIR ; IxlI<R} . We will write

JB f " JBf(x) dx.
R R

THEOREM 2.1.

Let uo E L (IRN) Then there exists u satisfying (2.1), (2.2) and

(2.3) u(O,.) u

BR B2R

where

(2.5) a 1/(0-m) , y - 2/(0-m) - N

and C - C(N,m) . - .

In the case when

(2.6) (N-2)+/N < m < I

the solutions obtained above are locally bounded. More precisely

THEOREM 2.2.

Assume (2.6) holds. Let u Lo(]R ) . Then there exists u solution of

(2.1), (2.2) with u(O,.) = u and such that Vt , R > 0
0.



7S

-5-

(2.7) sup ,u(tx) I , c[e JR ]2/N . (t/R 2)]
xEB R  C t [B 4R

_1

where e m- I + 2/N and C = C(m,N)

By slightly adapting the proof of Theorem 2.1 and 2.2, it will follow
N

that if (2.6) holds, the solution obtained u(t) is bounded in IR for each

t > O if for some p > O

(2.8) IluOil a sup J !U 0)I dx < '

p FE]R f x-U<p 0

We prove that this condition is necessary for non-negative solutions.

The same result was established for m > I in [8] and [2] ; (for m I ,

it is obvious from the usual representation of the solution in terms of u )

We next state a uniqueness result for (1.1), (1.2).

For technical reasons, we are compelled to deal with strong solutions by which

we mean a function u satisfying (2.1), (2.2) and

(2.9) a-u E L 1 (0,-'[ JRN) .N

THEOREM 2.3.

Let u,6 satisfy (2.1), (2.2) and (2.9) then

A A
u(O,.) - u(O,.) - u , u

Remarks

We will see that, if u 0 0 and (2.6) holds, by construction u(t) > 0 on

JR and

(2.10) eu au

for all t > 0 , (this comes from the results in [1]). As a

consequence, by standard regularity results u E C 0(]Ox90[ X IRN  and (2.9) is

more than satisfied. If u does not have a sign, using again the arguments inaui'.i:

[1] one can still conclude that (2.9) holds if u is continuous and 7 is "

a measure. Methods to prove continuity of u can be found in [II], [16). To

I

...................................... ..

L
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prove that -t is a measure would require a localization of the results in [61

concerning the estimate of IN [u*I in terms of IN j 0 1 We refer to (9]
1 N I N N:-

for uniqueness results when u E L ( I R ) n L (IR .

Concerning the behaviour of u(t,x) for large lx1 we have

THEOREM 2.4.

Assume that (2.6) holds, and let u be a non-negative function satisfying

(2.1), (2.2) and (2.9). Then if u 0 0 one has for each t > 0

(2.11) lim inf 1xi 2a u(t,x) >, (2myt)a

lxi-
where a,y are defined in (2.5).

Remarks

Property (2.11) is in striking contrast with the behaviour of non-negative "

solutions of (1.1) when m > I : In fact in this case a compactly supported

datum u gives raise to a (spatially) compactly supported solution u(t,x)

(see [14]). However in the linear case m = I it is well known that the minimal

rate of spatial decay for non-negative, non zero solutions is precisely that

of the fundamental solution ([19]). Notice that (2.11) does not involve the

initial datum u Its sharpness can be checked on the explicit solution

given in [5]
2e-a

(2.12) Ua(t,x) =t - {a+ (2my)-. ,xI2.t "-

where 0 is given in (2.7) and a is an arbitrary positive constant. The total

mass H(a) = IRN UatX) dx is a time invariant which depends only on a

for given m and N . One easily checks in (2.12) that the behaviour for large

lxi does not depend on M and realizes the equality in (2.11). In the case
N

when N = I and u E L'(IRN ) stronger results about this asymptotic behaviour

have been recently obtained in [17]. In particular, equality holds in (2.11)

under these assumptions when u is compactly supported.

I

- - . .- -. '-..... .- - ... -
. . .... *...-*-..*".. .-.'. ... ..--.. '.. ' " ' '"..'".,-, " - - "". - '" . .. ". . . 'r .-.. ,,: . ,":' : -. _' .,-; ' ,.i
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3. THE PROOFS

Lemma 3.1.

Ltu,u satisfy (2.1), (2.2) with u u . Then, for all R > 0 and

t's >' 0

(3.1 _ JB < C(). [f~ [U(S)-a_ j It-sla R-Y

where a,y are given in (2.5) and C = C(m,N)

Remark

Actually, this Lemma proves that any non-negative solution of (2.1), (2.2)

satisfies the local estimate (2.4) and not only the one we will construct

below. Moreover, the proof we are going to give could be applied as well to

solutions of the same equation in open cylinders containing [t,s] x B2

Existence on the whole space is not required. Note that in view of the explicit

solutions (2.12), exponents a,y in (3.1) are sharp.

Proof

A 0
From (2.1), (2.2) applied to u and u ,we have for any ip E C (R)

and a E C (0'-)

-f J~a~ u)= fn aA4(u julf u IuI

which implies

(3.2) T J N (u (t) u (0)) finN A4,(u IuI- A Am-i
JIR I

in c'(,o) and therefore in L' (0,-) as well. Since
boc

(riri -stt ) . 21 (-s)m Yr >, s

(3.2) implies

f~j 'P u~t-~) < 2' fIij (u-u)

AWe set v -uu U By H61der's inequality, we obtain

where

C~i [2 f~ IAq,10 P-am]
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By integrating the differential inequality (3.3), we are led to

(3.4) V st ' 0 [f Wv(t) I [ I v(s) + (1-) C() It-sl

If one can choose p E C'(IR ) such that

(3.5) 0 .< p I , = 1 on BR , 0 0 outside B2R

and

(3.6) C(p) .< C(m,N) R -Y(l -m)

one obtains the desired estimate (3.1). By setting i(x) = o(x/R) , since

by change of variable

C(p) = R- 2+N(I -m) C( o) = R -Y ( 1-m) C(,p 0)

we are reduced to the case R = 1 . We then choose for

instance o 0 where k is an integer . 2a and (P E C (IR)
0

satisfies (3.6) with R = 1 . Then we verify

C( o 0< C'(m,N) f (IAIoa + IVkp] 2a . C(m,N)..

Proof of Theorem 2.1.

The starting point is the following classical result (see [15]) for any p
u 0 L (IR N) n LOO(IRN) there exists u E C([O,[ ; L1(I RN)) n Lw([O,-[ x IRN)

solution of (2.2) with u(O,.) = u° . Moreover the mapping u -* u is
0 0

non-decreasing.
N +

Now, let uo E L'c (IRN) and uo = sup(u o ,0) , U sup(-U 0)

We denote by (vn) and (v p) two sequences of non-negative functions of
N N +

LI(IRN) n L(IR) increasing to u and uo  respectively.0n

Let p be fixed and let us denote by un  (resp. w n ) the solution of
n =n n

(2.1), (2.2) with un(0,.) = v - v (resp. wn(o,.) = vn ) • By monotonicity
n n n + n n
n w ,which implies (u) since wn > . By Lemma 3.1 applied with

n A
u W and uA 0 , we have for all R,t > 0

(3.7) (un)+(t) n(t) C u++ t a R- Y •

R R 2R

" . -" - , - -. •
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n n~t

Since n F+ u is non-decreasing, it follows that, when n + , u t

increases for all t to some function u (t) E L' (IRN) . Obviously u isp bcp

also solution of (2.2) and satisfies

(3.8) (u t) < C u +t R -

R 2R

It remains to show that u satisfies (2.1). We remark that, for all

p

s,t >_ 0

(3.9) TBR jUp(t)-~U(Sf .< If [u(t)-un(t)1+ Jun(t)-un(s)l I + [up(s)-un(s)]R 
R p BR 

BR

k AnBy Lemma 3.1 applied with u replaced by u and u by u (k >n)

and after letting k tend to o , we obtain

(3.10) Bup(t) - un(t)]., C [JB2R~up(s)-un(s)] + It-sICt R-]

By (3.9), (3.10) and the fact that un E C([O,o[;L1(IRN))

lini sup fB 1u p t)u p l 0+ (f-C 'B [u(s) - un(s)].
t s BR B 2R

We obtain the continuity of u (t) in Li  (IRN) by letting n go to o
p loc

i,. this inequality.

Now we let p tend to o and by a monotone (decreasing) process exactly

similar to the previous one, we obtain a solution u to (2.1), (2.2) with

u(O,.) = u . As in (3.8), we have

R  2R
This together with (3.8) and u u p yields the estimate (2.4).

The proof of Theorem 2.2 is based on the result of Theorem 2.1 and the

deep pointwise estimate established by Aronson-B~nilan [1], namely

%.
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Proof of Leimma 3.4.

Let ~PE Coo(~ IR N p~ 0 .By Kato's inequality
0

+ i

-(v-w) A(vm-wr) +on S

so that, thanks to (3.35)

eM

.- J (v-w)+tP f vnwi)~P Cm* Lx I -I

where again

C(00 - 2 1~ ~

Repeating the arguments in Lemma 3.1 and using (3.36), we deduce

Vt E (T,T) , R > I J(v-w) ) M~ c(t-T)0 R~

We let R tend to to conclude.
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Fix 0 < Tr < T .Since u(t,x) is continuous and positive in S ,there

exists 6 6(T,T) > 0 such that

(3.38) 6 min u(t,x) T . t $T , xl1I

We now select p > 0 such that

(3.39) U (t-T,x) < 6 when T t $T , xi >, 1/2

To this aim, we need according to the definition of U

(3.40) 11(t-r)6 11+ bii x2tT 2 I1 6

or

6 -1 -2 (t-t)6) + b x(-)

for i . t .~T and lxj >, 1/2 which is implied by

(3.41) 6 M-1 '< _ (t-T)0) + b(t-Tr) /4

But this function of t is bounded below by C bN( )2 1 -I where

C =C(m,N) C =C(m,N) > 0 .Thus (3.41) is satisfied if we choose p~ such that

~ C be( 1-m)/2 6 (1-m)O/N

Since U (t-T,x) =0 for .t = xi >, I ,by (3.39), (3.38) and Lemma 3.4

U11(t-tI,x) '< u(t,x) V T < t < T 1 x1 >, I

whence

2 20 [2mN(t-T)]
(3.42) lim inf lxi u(t,x) >, lim inf lxi U (t-r ,x) = (1)e

Since the right-hand side of (3.42) does not depend on p ,we can let T

tend to 0 and T -~~,so that (2.11) holds (note that y =N/(1-m)O)
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Proof of Theorem 2.4.

The idea is to show that any non-negative solution of (2.1), (2.2), (2.9)

is, for lxi large, bigger than some of the similarity solutions

U (tx) = p2' U(tjx) (I= 1/(/-m))

where U(t,x) a U(t,x) i.e. (see (2.12))

U(t,x) = t-(l + b Ix1
2 t-20/N) - (

with 0 m- I + 2/N , b = (2my) , Y and a as in (2.5).

By the uniqueness result of Theorem 2.3, u is necessarily the solution

obtained in Theorem 2.2. One knows that, if u >, 0 , u E L1 (I) n L (IRN )
0 0

and m > (N-2)+/N , then the corresponding solution is positive for all t > 0

(see [1]). Hence, by construction, u > 0 for all t > 0 . Since it is

also bounded and satisfies

ut = div(u-(]-m) Vu)

CO N
by classical arguments u is C on (O,oo) x IR (see [12]).

Now we use the following comparison Lemma -

Lemma 3.4.

N
Let 0 T < T , S i ]T,T[ x {xE IRN; xi > 1) Assume v,w are non-negative

and Coo on a neighborhood of S and satisfy

(3.34) V Awm on S

(3.35) v(t,x) .< w(t,x) t < t < T , Ixi - I

(3.36) v(r,x) < w(r,x) lxi I

Then

(3.37) v w in S

Let us assume this lemma and continue.

. ". " .

• ' -' .i .i -.- .:"?' -' ' > '? '- -:i:" :":.:. " .:::, .:? .''.. ::.:::.:i::::::'..,:.:.: . ... . .' .-. . . -.. :-.:-:ii
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20

su L-e(J) C )N + (/R2
xEB R (0) B 4RB (D) ~ tRJ

NNow the result follows by choosing R =1/4 and letting vary over IR .

A
As to the necessity, we use the two-sided estimate (3.1) with u =0 and

u(t,x) replaced again by u(t,x+&) to get

.fB 1  ud C I UM+ t l
which yields, if for instance u(1) E L'(IRN)

sup J u 0 rI lu(l1)II1. +
EUIN B1(E) L

Remark

When u . 0 and m >, 1 condition (2.8) is known to be necessary and

sufficient for solutions of (1.1), (1.2) to be globally bounded at each positive

time. For m > I , sufficiency has been proved in [8] whereas necessity follows

from the Harnack type inequality obtained in [2]. When m I the result

follows easily from the usual representation

IX-Y12
~~.. r 4t Fuvd

u(t,x) = ' J e u (y)dy >, C flxyy2$4

Note that proposition 3.2 contains as a particular case the well-known

regularizing effect from L' into LO (see for instance [18]).
0
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Integrating in time in (3.31) leads to

A N SIu(t)-u(t)l < Aw(t,x) in '(IR g ) for each t > 0

Thus w is subharmonic and therefore for all E E IRN

(3.33) w(t C w(t,x)dx YR > 0
R N J R(N )

for some C = C(N)'. The uniqueness results now follows by noticing that,
as a consequence of (3.32), the averages on the right-hand side of (3.33)

tend to zero as R -. - . In fact, denoting by C some constant depending

only on m and N , one has

w(t,x)dx < C ' Iu-uI m < C IU-AI(s)R ds
BR() 0 B(R() 0 B R(

1 2m
- N-_-- m

C RN  - m  t(RN2c sC)m ds < C t 1 m R 1-rn

We now discuss briefly about boundedness of solutions.

Proposition 3.2.

Assume (2.6) holds. Then the solution obtained in Theorem (2.2) is

bounded for all t > 0 if:

ul sup 'B 1 dx < :"
P EIRN

Moreover this condition is necessary if u0 > 0 and 0 < m < .

Proof

We can obviously reduce ourselves to the case p I 1

We begin with the sufficiency part. Since the solution with initial value

lUol bounds the absolute value of the solution with initial value u° ,it

suffices to deal with non-negative solutions and without loss of generality
N

we can assume p - I . Let E E IR be arbitrary. We apply Theorem 2.2 to

u(t,x+E) for fixed t > 0 to obtain

.......... .
............

• . . . - , • . . . . - % , °. . • . . . ° - • • . ° , • . ° °
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Proof of Theorem 2.3.

ALet u,u satisfy (2.1), (2.2), (2.9). Thanks to the regularity assumption

(2.9), one can apply Kato's inequality [13]

JUI ni-A rn-il A ( M-i_ A A m-1(3.30)- A lu lul l-u ulml . - sign(u-u) A(u lul -u I lI

Hence, using (2.2) again, we have

(A-i A IAIm-l1 in Z,'(0,_) xIRN)

(3.31) atlu-u -A u lu -iu

For any ip E C (]RN ) , 0IR N. l , we then obtain
0

d r _Alt Ar iU rI-i A A^M-i1 A m
- j ' lu-ul(t) < IA'l IU jul-u jul (t) s C J lA[ Iu-uI (t)

where

C('0 = 2 J-N nWl

Therefore, we are led to a differential inequality of type (3.3) except

that it is unilateral here. As in the proof of Lemma 3.1, we deduce

fB RLuU~t fB 2Rju-CI()+ +RN(t/ R2 )i DBR B2R

A N
Applying this estimate to u(t,x+) , u(t,x+E) where E IR is fixed

but otherwise arbitrary and writing BR( ) {xE IRN  x- l <R} we get

(3.32)J u-ul(t) < C lu-u(O) +RN (t/

B R(E) B2R( R2)

Assume now that u(O) = uA(O) . Then if N < l->

uniqueness follows by just letting R - for each fixed t > 0 in (3.32).

Otherwise we can argue as follows. Set
ft lU Iu I -

w(tx) = -u lulI (s,x)ds

0 t

.,. - -..

".-. . "," -- - . '."."-" .- ." -" -"'''. '". L .''',-.'''-. . - -' --' . -"-- ' -"-" -" . . . ..""-'- ." . .""" . , .' * -" ,_, J ' ,
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Proof of Theorem 2.2.

Let u EL (IR) By Theorem 2.1, we know there exists a solution u
0 Ltc

of (2.1), (2.2) with u(O,.) - u° . This solution has been constructed as the

monotone limit of solutions un in C([O,o[;L(ORN)) n L((o,-)x IRN) with
n L N P N n+un (0,.) _ v E L( IR) fl L° (N v increasing to u and v to u

poP n p
Moreover Ju (t) I is bounded above by the non-negative solution with initial 0

datum vn +vp , which increases to IlUlpo

According to these remarks, it is sufficient to prove (2.7) when u 0 O

and u0 E L I ( iRN) n. L (IRN) .

If u is a solution of (2.2), then so is w(t,x) = R2 a T-a u(Tt,Rx) for

any R,T > 0 and a - 1/(]-m) . By homogeneity, we check that (2.7) is nothing

but the same inequality applied to w at t - I

Now w satisfies the estimate (3.12). In particular

S

- Awm (1) $ Aw(1)

so that by Lemma 3.3

(3.28) sup w(I,x) < C [A' f w(l) + w(1)
Ix I.< Ix I<2 

where we again denote by C any constant depending only on m and N

Now by (2.4)

(3.29) w(l) , C w(0) + I
Ixl <2 I x1,<,

Finally (3.28), (3.29) yield

sup w(1,x) .< C A0  w(O)] + J w(O) + I]
Ixl,<i Ixl,<4 xl<4<"

Going back to the original variables this reads

sup Iu(t,x)I. <C [t_( 0u1)26/N + R-N K 1u 0  + (t/R2)a]

xEBR B 4R B4R

This together with the next consequence of Young's inequality

'.N~~~ f.'2/N+.)a

R 'B I- C(mN) [,-(,) (t/R

B4R LR

provides the desired estimate (2.7).

L

. . ... ...

,-|

• - i- .) _- -.- -- i- "? '-L ' '." i. . ".7 7.' i-: ? -) -? i. -7 7.) 7 . .- .-...-.... .. -. .. '.".". ." --. .. -. " ".- '-.- .".---.. . .". ".•.. ..-

"< - - ','-' '- .' .'-' " ",' '- -'. -' " '. .',..'.''. .- .'-', -'.'- .-. " . "-- -. " - " -- . '-.. . . . . .. . . . . . . . . . . . . . . . .-... ."...,.--.•.-.. ....- ,.-. .- - .-" " , .- .
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0 N
If N - 2 , for all w Co(M ) we have by Sobolev's inequality

J2 < C IVWI] 2

Hence, for w > 0 and all 6 > 0

22

For w with support in B2 , we then have by Hblder's inequality .".

26 f6 100/6
Jw '< C62  w IwW12

which implies

26 < C62  1,7 17
(3.27) ~ JwJ 6 7

This inequality allows us to argue as when N > 3. Here we set

Po Pk+1 2 k + m- 
.

bk =max v ,I
k 

(m+pk-1) /2
By (3.15) and (3.27) applied with w v , k > I and

6= 6k = (2 , we obtain as above

k+ 1  
2b < (A+) 2 b

k+ 1 Ck

We check independently that this also holds for k --0 After iterating

this estimate, we deduce

1/pk+1 e 6'
lim sup b k+1 C(A+1) b 0

k-

where

_0

2+li 22 2~ + +2 k+1 2~,e=i 2 k+1 I
-- lira 2+2 .. 26 ' ;lira -

k-iooPk+ __ ' k-oo Pk+1 "

We finish by homogeneity as for N ? 3,

The case N = I is easier and left to the reader.

. . ...... ... ~~~~........... . ..... .... .................... .................. 1 ......-. %
• .. ~~~~~~~~~~.. . .......... .-. -. .....-. '... .'.. ............. " , .-.......... -. .. ...-.-
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x=v nd A A .A
Now, let v and v =Xv so that = v We verify thatvJB JB

satisfies the estimate

-m .< AX V

A ir
Applying (3.25) with v replaced by v and A by AX yieldsA i-rny 0 -m yils :''

IvAII L -(B1) .c C(AA +1) < C(A0 A(i-m)e+,)

which implies

lv"lL, (B) - C 2 -  ) + B1- + 2 lyI I BVI l  .2

This is the desired estimate (3.14) since (1-m) 6+ 1 26/N .

To complete the proof when N > 3 , we need to establish (3.22) for

k - 0 . For this, we use H6lder's inequality and (3.18) with p P, - sm

(recall that P2  s(sm+ M-1))

vv <P/Sl

v [J ] . 2/Ss i /j s/(s+i)

4 c [AJ VPlIp2 + [JVP2]21 (

We deduce that

( 3 .2 6 ) [ m a x { J v p 2, ] " . < o < ,+ C , > , , , + v ,2/ s , s + ,.i )

We now choose ip - p /(-) with E C , 0 o "< 1 , o - 1 on
0 0 0 00

B3/2 and =0 outside B2  to obtain

P, 2

max v~J ,1 4 C(A+I) s  v

B3/2 2

which is (3.22) with k - 0

7................................. .
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Now, for any k . 0 , we set

"Bk = {xEIRN ; x < 2- k

(3.19) = s'k - (l-m)s , Po I
=k+ °s 'k

ak = I Pk -::

{kJ
Bk

For k >, I , we choose in (3.18) P = Pk and p p/(l-m) where

k Co < O,< k  I , 1 = 1 on Bk+1 and k outside Bk so that
[[k 0 o <' k and 1II < k k •Ti mle

k k
JIf~k 1 0 C2 n C 4 . This implies

(3.20) C) < C [f I k [ k k + VlIk ] / k  4k

Hence by (3.18), (3.20) and the fact that Pk s s , for all k I 1

k+1 Is s P'k+i k)'(3.21) a k+, < +C (A a k + kk )

Since Pk+1~k < s , the sequence bk = max(ak,l) satisfies

ck+1 s (eips )-'
(3.22) vk > I bk < (A+I) s b (we impose C 1)

We will prove below that this inequality also holds for k 0 . Let us

assume it and continue. By induction

k+l+ks+..+s k s+s2+.. .+sk+l  5k+1
(3.23) bk+ I  C (A+]) b 00

But, from (3.19) we also obtain by induction

k+1 k+1
Pk+1 = s - (1-m) (s+s2+...+s k )

Hence passing to the limit in (3.23) yields

1/Pk+l ) 2/

(3.24) lim sup (b ).< C(A+I) b-2/Nk-,oo (k+1 0 :::

where e =m-I + 21N, that is

(3.25) max(lIvllLo(B ),) C(A+I)e max( v,l)2 o/N

2

%7L

....................

• =================== :: : ::: :::::::: ::::::::: ::: .:: .! ( - '. !:i .::! :: .- .: :: : ' i: :-:-::: i:' :::: ! : : i : i :i i!:
• ..-,,:, ,., .'.. - .- .- .-•.. . . .. . . . . . . . . . . . . . ..-, . . . .-' .. ' . .. . . ..-.. .--. , .'- .,. . .-,'. .. ," - .. -.. . -, ..". ". .- , . .-". "-.



Proof

It is sufficient to prove the estimate (3.14) for R 1 . Indeed, if v

satisfies (3.13), then so does w defined by

w(x) = R2/(l- ) v(Rx)

Now (3.14) is nothing but the same estimate applied to w with R = 1 .

ges af e(IRN) , 0 1<tg a . Multiplying (3.13) by vp-1 p2 where

p > I gives after integration by parts

Svm V(vP 2) < A I vP o2.

17k We deduce

(3.15) 4 (p-1)m J 1 v(m+p-l)/2I, 2 < A v p p2 + m v m+p-A

(rn+p-l)2 fe+p- I

Now we assume N > 3 and we denote by C any constant depending only

on N and m . Using that
-012 12m+P- "

(3.16) (V(np)/2*< 1 ,vv(m+P)/2,2 + C Vy

by Sobolev's imbedding, we have with s NI(N-2)

(.7 [Js(m+p-l) *2s] /s C [(M+1)2 AJVP *2 + M + J M+p-i *I ](3 17 If v I(p-l)m A + p-I

By Hlder's inequality, for all p > sm > 1 (by 2.6), we have

(3.18) [JvS(m+Pl) *2 1/s C [- A v 2 + v e ' C(J

where
P-) ]((-m)/p

CM(b ,2(re+p-lI)/(im)"

This inequality shows that v can be estimated in Ls(m+p- ) in terms
loc

of bounds of v in LP . Repeating this estimate will provide an estimate
boc*

of v in LO c  in terms of an L Smnorm of v . We will indicate below how one
loc

can start from an Ll-norm of v

p

:,:,.::..: ,:'.,::,.:', ":. :-::.: -:...,:, ,..... . . , . .. .. . . - ,-.... . .. . .. ., . . . . , : - ,
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Lemma 3.2.

Assume (2.6) holds. Let u E LI(IRN) n Lco(IR) u° > 0 and let u

be the non-negative solution of u(O) = u and

(3.11) u E C([Oa:[;L (IRN)) u Aum = 0 in 0'((O,o)) x IRN)

Then

(3.12) Aum > - eu/t in (0,-) x

with 0 = N/(2+N(m-1))

Remark

Estimate (3.12) can be understood as a strong pointwise inequality since

u > 0 and u E Cco((O, ° ) x IR ) as proved in [1].

Now, the Ll -regularising effect will be a consequence of (2.4), (3.12)

and the next lemma, which is of independent interest.

.' Lemma 3.3.

Let v be non-negative, smooth and satisfying

(3.13) - Avm .< Av in '(IRN

where (N-2)+/N < m < I and A > 0 . Then, for all R > 0

*(3.14) l~vii Lc(BR) XI C [A' [B v12e/N + R-N B vi

2R. 2R

where 0 = m- I + 2/N and C = C(m,N)

Remark
00

The method for obtaining L -estimates by using the pointwise estimate

(3.12) has already been used in [8] where a result similar to Lemma 3.3 is

stated (see Proposition 1.3) to treat the case when m > 1 . However the local

character of (3.14) (which has not been explicitly established in [8]) does not

carry over to the solution of (3.11) if m > 1 . Obviously, this is due to the

lack of local estimates like (2.4) in that case.

. . . . . . . ..0
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